1.3 涂料的干燥成膜机理及工艺
1.3.1 涂料的干燥成膜机理
涂料的干燥成膜过程即将涂料施工于被涂物件表面由湿膜或干粉的堆积层转化成连续固态涂膜的过程,它直接关系到涂膜能否充分发挥预定的效果,是整个涂料使用中最重要的环节。根据成膜物质在成膜过程中所发生的变化,可分为物理成膜和化学成膜两类。
(1)物理成膜
涂料中的成膜物质为非转化型的(即在干燥成膜过程中只有相态的改变,不发生化学结构变化),这类涂料的成膜物质多为线型结构,有一定的热塑性,玻璃化温度(Tg)略高,以保证漆膜在常温或使用温度下能承受一定外界力学损伤的固态膜。它包括两种成膜形式:
①溶剂或分散介质的挥发成膜方式 该方式的涂膜干燥速度和程度直接与溶剂或分散介质的挥发能力相关联,同时也与成膜物质的化学结构、相对分子质量、玻璃化转变温度,以及溶剂在涂膜中的扩散速度、成膜条件、厚度有关。以挥发方式成膜的涂料种类有过氯乙烯漆、沥青漆、橡胶膝、热塑性烯烃树脂漆等。
②聚合物粒子凝聚方式 该方式是依靠高聚物粒子在一定条件下接触、挤压、变形,最后由粒子状态的聚集转变为分子状态的聚集而形成连续的涂膜。这是分散型涂料(如水乳胶、塑性溶胶)、粉末涂料的主要成膜方式,固体的粉末涂料在受热的条件下通过高聚物粒子热熔、凝聚而成膜。
(2)化学成膜
由转化型成膜物质组成的涂料被施工为薄膜状态下,成膜物要发生一系列化学反应而转变为具有一定性能的高分子膜。其结构大多为大分子网状结构,所发生的反应完全遵循高分子合成反应机理,因此可分为链锁聚合反应成膜和逐步缩聚成膜两种方式。
①链锁加聚反应成膜主要有三种形式。
氧化聚合形式含有油脂组分的天然树脂涂料、醇酸树脂涂料、环氧酯涂料等依靠该方式成膜,即所含有的干性油和半干性油,在涂装于工件表面后油脂中不饱和脂肪酸的双键与空气中的氧发生氧化聚合反应而形成涂膜;其机理为高分子自由基连锁加聚反应机理。油脂的氧化聚合速度与其所含的亚甲基基团数量、位置和氧的传递速度有关,利用钴、锰、锆等金属可促进氧的传递,从而加速涂料的成膜。
引发剂引发聚合形式含有不饱和基团(双键)的合成树脂涂料,是靠引发剂分解产生的 自由基来引发双键发生自由基连锁加聚反应而形成高分子涂膜。如不饱和聚酯、乙烯基酯类 涂料等遵循此成膜反应方式,引发剂主要为过氧化类化合物,如:过氧化苯甲酰等。
能量引发聚合形式在紫外光或辐射能的作用下,涂料产生活性自由基引发聚合成膜。以紫外光引发成膜的涂料通称光固化涂料,在光敏剂的存在下,成膜物的自由基加聚反应进行的非常迅速,涂料在几分钟内固化成膜。利用电子辐射成膜的涂料通常称为电子束固化涂料,电子束具有更大的能量,直接激发单体或聚合物产生自由基,在数秒内完成加聚反应,固化成膜。电子束固化目前是涂料最快的成膜方式。
②逐步缩聚成膜方式。依据高分子逐步缩合反应机理成膜的涂料,成膜物质多为含有可反应官能团(如羟基、羧基、氨基、环氧基、羟甲基、异氰酸基等)的低聚物或预聚物。可以是由一种含有两种不同官能团的成膜物组成的“自交联型”涂料(如自交联丙烯酸涂料),也可以是由两种或两种以上分别含有不同官能团的成膜物(或固化剂)组成的涂料(如环氧、聚氨酯、酚醛树脂涂料等)。
大多涂料成膜过程既有物理成膜作用,又有化学成膜作用,是由多种方式共同作用形成最终涂膜。
1.3.2 涂料的干燥成膜工艺
不同的成膜方式需要不同的条件,成膜条件直接影响成膜效果及涂膜性能。从实际应用考虑,常将涂料的干燥成膜工艺分为:自然于燥(俗称自干或气干)、烘干和照射固化三种。
无论是在自干、烘干或照射固化场合,为确保漆膜质量,漆膜干燥都应具备下列条件。
①烘干室内或自干场所要清洁,无灰尘,空气要干净。
②温度应符合涂料的技术要求,过高过低都会影响干燥效率和漆膜质量。
③空气要流动,因空气流动有利于溶剂的挥发,有利于干燥成膜。
④一般要在前一层漆膜充分干燥后才能涂第二层漆,不然易产生咬底、渗色等漆膜弊病和影响干燥效果。但有些涂料,如环氧树脂漆,有一定的复涂限期,过早尚未成膜,过迟层间附着不良。对“湿碰湿”工艺是例外。
1.4 涂膜附着机理及附着力影响因素
1.4.1 涂膜附着机理
涂膜与基材表面附着好坏是漆膜发挥保护功能的前提和保证,因此涂膜与基材表面的粘合力(即附着力)是涂膜最重要的基础性能指标。涂膜与基材的以下几种作用形式决定了漆膜与基材间的附着力。
(1)机械嵌合作用
任何物体的表面即使用肉眼看来十分光滑,但放大起来看还是十分粗糙、遍布沟壑的,有些表面还存在很多孔隙。涂装时,涂料就渗透到这些小沟和孔隙中,固化后就像许多小钩似地把涂料和被粘物连在一起。显然这种机械镶嵌作用将会起到很大的机械结合效果,破坏时必须要用较大的力才能把这些伸展的固化涂料从主体的缝隙中撕裂,所以能起到很好的粘合作用。例如,经过喷砂处理后的表面其附着力往往可比光滑的表面提高一倍。
(2)吸附作用
从分子水平上看,涂膜与基材表面间存在原子、分子之间的相互作用力,这些作用力包括主价力(化学键力)、次价力(氢键和范德华力)。虽然固体与固体之间达不到理想接触,次价力作用体现不出,但固体表面由于范德华力的作用能够吸附液体和气体,这种作用称为物理吸附。物理吸附是涂料、胶粘剂和被粘物之间牢固结合的普遍性原因,其条件是液体必须完全润湿固体,这就是吸附理论。因此涂料在固化之前完全润湿基材表面,才能有较好的附着力;吸附力的大小与分子的偶极矩、极化率等因素的大小成正比;高分子链含有极性基团,特别是带有能形成H一键的基团(如氨基、羟基等)时,会有较强的附着力。通常认为,分子间引力(氢键、范德华力)是附着力的主要来源,即使如此,其粘附力也远比理论强度低得多,这是因为在固化过程总是有缺陷发生的,粘附强度不是决定于原子、分子作用力的总和,而是决定于局布的最弱的部位的作用力。
但需注意:吸附理论仅说明附着力产生的条件和原因,选择成膜物时还必须考虑涂膜内聚力的因素。
(3)化学键作用
涂料中的活性基团与基材发生化学反应,产生化学键,如:酚醛树脂可在较高温度下与铝、不锈钢等发生化学作用,硅酸盐类无机涂料与铁产生化学反应,产生硅酸铁类化合物。化学键的作用力要较物理吸附作用强的多。偶联剂的应用就是利用此机理来提高附着力的重要体现,偶联剂分子必须具有能与基材表面发生化学反应的基团,而另一端能与涂料反应.如:常用的硅烷偶联剂。
(4)扩散作用
涂料中的成膜物为聚合物链状分子,如果基材也为高分子材料,在一定条件下由于分子或链段的布朗运动,涂料中的分子和基材的分子可相互扩散,相互扩散的实质是在界面中互溶的过程,最终可导致界面消失。高分子问的互溶首先要考虑热力学的可能性,即要求两者的溶解度参数相近,另一方面,还要考虑动力学的可能性,即两者必须在T,以上,有一定的自由体积以使分子可互相渗入。因此塑料涂料的溶剂最好能使被涂塑料溶胀,提高温度也是促进扩散的一个方法。带锈涂料、修补涂料具有扩散作用是涂膜发挥其功能性的重要因素。
(5)静电作用
当涂料与基材间的电子亲合力不同时,便可互为电子给体和受体,形成双电层,产生静电作用力。例如,当金属和有机漆膜接触时,金属对电子亲合力低,容易失去电子,而有机漆膜对电子亲合力高,容易得到电子,故电子可从金属移向漆膜,使界面产生接触电势,并形成双电层产生静电引力。
涂料在基材表面浸润是上述作用能够发挥的前提。
1.4.2 附着力影响因素
附着力的影响因素是由上述理论结合涂装实际复杂因素分析得出,其重要因素为:
①基材表面的润湿情况要得到良好的附着力,必要的条件是涂料完全润湿基材表面.通常纯金属表面都具有较高的表面张力,而涂料一般表面张力都较低,因此易于润湿。但是实际的金属表面并不是纯的,表面易形成氧化物,并可吸附各种的有机或无机污染物,这可大大降低表面张力,从而使润湿困难。表面处理的目的就是在于提高基材表面的表面能,有利于涂料的浸润。对于低表面能的基材,更要进行合适的处理
②表面粗糙度适当的提高表面粗糙度可以增加机械嵌合作用,另一方面也有利于涂料在基材表面的润湿。但过于粗糙,易产生缺陷,带来附着力下降,或抗渗保护性能降低。
③涂料粘度涂料粘度较低时,容易流入基材的凹处和孔隙中,可得到较高的机械嵌合力。一般烘干漆具有比气干漆更好的附着力,在高温下,涂料粘度很低,也是原因之一。
④成膜物成膜物大分子极性基团的极性越强、个数越多、相对分子质量越大,越有利于成膜物与基材表面形成较强的分子间作用力,结合牢固。
⑤内应力影响漆膜的内应力是影响附着力的重要因素,内应力过大,大于涂层内聚力时,涂膜开裂;大于涂膜附着力时,涂膜产生脱壳等破坏,丧失保护作用。内应力有两个来源:涂料固化过程中体积收缩产生的收缩应力;涂料和基材的热膨胀系数不同,在温度变化时产生的热应力。
涂料不管用何种方式固化都难免发生一定的体积收缩,收缩不仅可因溶剂挥发引起.也可因化学反应引起。缩聚反应体积收缩较严重,特别是对于有小分子产生的缩聚反应固化过程,因为有一部分要变成小分子逸出。烯烃或低聚物的双键发生加聚反应时,两个双链由范德华力结合变成共价键结合,原子距离大大缩短,所以体积收缩率也较大,例如不饱和聚酯固化过程中体积收缩达10%。开环聚合时有一对原子由范德华作用变成化学键结合,另一对原子却由原来的化学键结合变成接近于范德华力作用,因此开环聚合收缩率较小,环氧树酯固化过程中收缩率较低,这是环氧涂料具有较好的附着力的主要原因。降低固化过程中的体积收缩对提高附着力有重要意义,增加颜料、增加固含量、加入预聚物以减少体系中官能团浓度是涂料减少固化收缩的常用方法,加入无机填料同时还具有降低涂膜热膨胀系数的作用,减少热应力。另外涂膜越厚,内应力也越大。总之,漆膜的内应力与附着力以及漆膜强度之间是相互抗衡的。
1.4.3 湿附着力及影响因素
湿附着力是指漆膜在水中浸泡一段时间后,漆膜与基材表面的结合力。当漆膜浸入水中后,水分子透过漆膜到达金属界面,原先金属表面活性点与漆膜中的极性基团间的吸附,由于水分子的介入和置换取代,使附着力降低。实际上漆膜的防腐蚀功效是在湿态下(产生电化学腐蚀)才发挥作用,所以高的干态附着力并不能保证漆膜的耐蚀性。湿附着力是涂膜防腐蚀性能的一个关键性因素。
为了获得较高的湿附着力,涂膜除具有较高的干附着力条件以外,下列因素均对提高湿附着力有利:
①成膜树脂的耐水性好。
②漆膜含氨基可提高湿附着力。其原因:A.因腐蚀作用而使阴极部分受碱性侵蚀,高聚物皂化水解,破坏涂层/金属界面附着力。含氨基,耐皂化好,从而保持附着力;B.浸水后,树脂中的羟基等极性基团与金属表面活性中心的吸附会被水逐渐介入而替换,丧失附着力,漆膜中若含有碱性基团(给电子基团)所具有的吸附力不易被水置换。如:通常的胺固化环氧树脂固化之后,氮原子仍呈碱性,与钢面附着力强,湿附着力受水的影响小,r故其耐蚀性能远高于醇酸漆膜、环氧酯底漆。
③可尝试在涂料中加入有机硅偶联剂、铝酸锆添加剂、钛酸酯类偶联剂以及锆酸酯类偶联剂。
另外,起泡是湿附着力丧失、涂层失效的重要体现。涂膜湿态刚性越大,挠性越低,涂膜不易起泡,就如同粘在玻璃板上的胶带纸易剥下,而两块玻璃板吸附在一起却难以揭开一样。因此,浸在水中的防腐涂层,不宜是富有弹性、挠性的,而宜是刚性坚硬的,具有较高 的杨氏模量。厚的涂层也有利于抗起泡,但涂层过厚、刚性过大,不利于抗开裂。要综合考虑各种情况。