机械设计 > 机械设计
+

铸件设计的工艺性和铸件结构要素

2020/5/21    作者:未知    来源:网络文摘    阅读:530

铸造技术发展趋势及新一代精确铸造技术

发展方向

轻量化、精确化、强韧化、高效化、数字化、网络化和清洁化

一、铸件轻量化

近年来,对通过降低产品自重,以降低能源消耗和减少环境污染,提出了更迫切的需要,由于铝、镁合金的质量轻以及它们的优异性能,受到各国的普遍重视,尤其是镁合金是金属中最轻的,而且其产品材料回收率高,被认为是一种最具开发和发展前途的“绿色材料”。例如,美国福特汽车公司新车型中使用的主要材料中钢铁用量将大幅度减少,将从978kg降低到218kg,而铝及镁合金将显著增加,铝合金将从129kg增加到333kg,镁合金将从4.5kg增加到39kg。专家预测,到2009年,74%的汽车发动机汽缸体及98%的缸盖将用铝合金铸造。

二、铸件的精确化——新一代的精确铸造技术

名称

原理和特点

适用生产的铸件

出品率

毛坯

利用率

应    用

材料

(1)质量

(2)最小壁厚/mm

(1)尺寸公差

(2)表面粗糙度/μm

形状

特征

批量

/%

消 失 模 铸 造

是先用成形机获得零件形状的泡沫塑料模型(代替铸模进行造型),接着涂抹耐火涂料及干燥,然后放入砂箱中填砂,并直接浇注液体金属,烧去塑料模型,得到铸件的方法。是一种近无余量,精确成形的新工艺

它无需取模,无分型面,无砂芯,并减少了由于型芯组合、合型而造成的尺寸误差,因此,铸件没有飞边、毛刺和超模斜度,尺寸精度高;工序简单,生产效率高;生产清洁,工人劳动强度低,要求技术熟练程度低;零件设计自由度大;投资少,成本低;但生产准备较复杂

合肥合力叉车集团公司生产的这类铸件,已达国际先进水平

铝合金、铜合金、铁、钢

(1)从数克到数吨

(2)铝合金2~3,铸铁4~5,铸钢5~6

(1)CT6~CT

9级

(2)Ra=6.3~12.5,加工余量最多为1.5~2mm

干砂振动造型,大批量,中、小件;自硬砂造型,单件,小批量,中、大件

40~75

70~80

铸件结构越复杂,砂芯越多,越能体现其优越性和经济性。目前国外多用在汽车发动机缸体、缸盖、进气歧管等铝合金铸件上,国内多是管件、耐磨耐热件、齿轮箱等钢铁铸件

顺 序 凝 固 熔 模 铸 造

由于科学技术的发展,传统的失蜡铸造技术已发展成为顺序凝固熔模铸造新技术,可以直接生产高温合金单晶体燃气轮机叶片

(见图),这是精确铸造成形技术在航空、航天工业中应用的杰出范例。从20世纪60年代初期等轴晶高温合金实心涡轮叶片发展到20世纪90年代中期单晶高温合金空心涡轮叶片,叶片的承温能力提高了400℃左右。单晶高温合金涡轮叶片已在航空发动机上获得广泛应用(见图1)。美国第四代战斗机F22所用的推重比为10的发动机的第二代单晶合金高压涡轮空心工作叶片是材料与铸造成形制造技术高度集成的杰出体现。在这方面,我国与美国等工业发达国家相比,仍有较大差距。

b1d2d1a

图1  单晶高温合金涡轮叶片的应用

b1d2d1b

熔模铸造(又称失蜡铸造)

它是用可熔(溶)性一次模和一次型(芯)使铸件成形的方法。其铸件接近零件最后形状,可不加工,或加工量很小,就可直接使用,是一种近净形生产金属零件的先进工艺

它可以铸造形状复杂的铸件;产品精密;合金材料不受限制;生产灵活性高,适应性强

但生产铸件尺寸不能太大,工艺流程烦琐,铸件冷却速度较慢,生产周期长

铝、镁、铜、钛四种合金,铸铁、碳钢、不锈钢、合金钢、贵金属、镍、钴基高温合金

(1)1g到1t

(2)最小壁厚

0.5mm,最小孔径05mm,轮廓尺寸从几毫米到上千毫米

(1)CT4~CT6级

(2)Ra=0.4~3.2μm

复杂

铸件

小、中、大批量

30~60

90

主要用于精密复杂的中、小铸件,目前几乎已应用于所有工业部门,如航空航天、造船、汽轮机、燃气轮机、兵器、电子、石油、化工、交通运输、机械、泵、阀、纺织、医疗、仪器仪表、家电等

半  固  态  金  属  铸  造

是利用球状初生固相的固液混合浆料铸造成形;或先将这种固液混合浆料完全凝固成坯料,再根据需要将坯料切分,并重新加热至固液两相区,利用这种半固态坯料进行铸造成形。这两种方法均称为半固态金属铸造。其工艺过程主要分为两大类工艺过程

由于半固态金属及合金坯料的加热、输送很方便,并易于实现自动化操作,因此,当固态金属触变压铸和触变锻造已成为当今金属半固态成形中的主要工艺方法。但流程更短、成本更低的半固态金属及合金的流变成形技术也正在逐步进入实际商业应用

例如,利用触变铸造法,1997年美国两家半固态铝合金成形工厂的生产能力分别达到每年5000万件,近年来,它的一些主要零件毛坯年产量为:制动总泵体240万件,油道和发动机支架各100万件,摇臂座150万~200万件,同步带托座20万件。另一公司利用镁合金触变射铸技术生产了50余万件半固态镁合金汽车零件。北京科技大学也成功连续铸出球状初生晶粒的AlSi7Mg合金坯料,并触变成形出汽车制动总泵壳及其他零件,触变成形实验达到中试水平等

工 艺 过 程 分 类

(1)流变铸造 是利用剧烈搅拌等方法制出预定固相分散的半固态金属料浆进行保温,然后将其直接送入成形机,铸造或锻造成形。采用压铸机成形的称为流变压铸,采用锻造机成形的,称为流变锻造

b1d2d1c1

图2  半固态金属流变压铸示意图

1—搅拌棒;2—合金液;3—加热器;4—冷却器;5—搅拌室;

6—半固态合金浆料;7—压射冲头;8—压铸压射室;9—压铸型

(2)触变铸造 也是利用剧烈搅拌等方法制出球状晶的半固态金属料浆,并将它进一步凝固成锭坯或坯料,再按需要将坯料分切成一定大小,重新加热至固液两相区,然后利用机械搬运将其送入成形机,进行铸造或锻造。根据采用成形机不同,也可分为触变压铸、触变锻造等

b1d2d1c2

图3  半固态金属触变压铸示意图

b1d2d1c3

图4  半固态金属触变压铸设备平面布置图

1—坯料搬运机器人;2—H-630SC型压铸机;3—铸件抓取机器人;

4—浇注系统锯切机构;5—铸件冷却箱;

6—涂料喷涂装置;7—加热系统

①在重力下,重熔加热后的黏度很高,可机械搬运,便于实现自动化,在高速剪切作用下,黏度又可迅速降低,便于铸造;②生产效率高;③改善了金属的充型过程,不易发生喷溅,减少了合金的氧化和铸件裹气,提高了铸件的致密性,可通过热处理进一步强化,其强度比液体金属压铸件更高;④减少了凝固收缩,铸件收缩孔洞减少,可承受更高液体压力;⑤铸件不存在宏观偏析,性能更均匀;⑥其固相分散,便于调整,借此改变半固态金属料浆或坯料的表面黏度以适应不同工件的成形要求;⑦铸件为近终化成形,大幅度减少毛坯加工量,降低了生产成本;⑧充型温度低,减轻了对模具的热冲击,提高了模具寿命;⑨节约能源25%~30%;⑩操作更安全,工作环境更好;(11)半固态金属的黏度较高,便于加入增强材料(颗粒或纤维)廉价生产复合材料;(12)充填应力显著降低,因此,可成形很复杂的零件毛坯,其铸件性能与固态锻件相当,而降低了成本

不同铸件力学性能比较

A356和A357合金半固态触变压铸件与其他铸件的力学性能比较

合金

种类

成形

工艺

热处

理工

屈服

强度

/MPa

抗拉

强度

/MPa

伸长

/%

硬度

HBS

合金

种类

成形

工艺

热处

理工

屈服

强度

/MPa

抗拉

强度

/MPa

伸长

/%

硬度

HBS

A356

SSM

SSM

SSM

SSM

SSM

PM

PM

CDF

铸态

T4

T5

T6

T7

T6

T51

T6

110

130

180

240

26

186

138

280

220

250

255

320

310

262

186

340

14

20

5~10

12

9

5

2

9

60

70

80

105

100

80

A357

SSM

SSM

SSM

SSM

SSM

PM

PM

铸态

T4

T5

T6

T7

T6

T51

115

150

200

260

290

296

145

220

275

285

330

330

359

200

7

15

5~10

9

7

5

4

75

85

90

115

110

100

注:SSM—半固态触变压铸件,PM—金属型铸件,CDF—闭模锻件。

快  速  铸  造

快速铸造是利用快速成形技术直接或间接制造铸造用熔模、消失模、模样、模板、铸型或型芯等,然后结合传统铸造工艺快捷地制造铸件的一种新工艺

快速铸造与传统铸造比较有下列特点:

(1)适宜小批量、多品种、复杂形状的铸件

(2)尺寸任意缩放,数字随时修改,所见即所得

(3)工艺过程简单,生产周期短,制造成本低

(4)返回修改容易

(5)CAD三维设计所有过程基于同一数学模型

(6)设计、修改、验证、制造同步

快速铸造可以将CAD模型快速有效地转变为金属零件。它不仅能使过去小批量、难加工、周期长、费用高的铸件生产得以实现,而且将传统的分散化、多工序的铸造工艺过程集成化、自动化、简单化。它的推广应用对新产品开发试制和单件小批量铸件的生产,产生积极的影响,SLA或SL适合成形中、小件,可直接得到类似塑料的产品

快速成形技术 是指在计算机控制与管理下,根据零件的CAD模型,采用材料精确堆积的方法制造原型或零件的技术,是一种基于离散/堆积成形原理的新型制造方法

原   理

它是先由CAD软件设计出所需零件的计算机三维实体模型,即电子模型。然后根据工艺要求,将其按一定厚度进行分层,把原来的三维电子模型变成二维平面信息(截面信息)。再将分层后的数据进行一定的处理,加入加工参数,生成数控代码,在微机控制下,数控系统以平面加工方式,顺序地连续加工出每个薄层模型,并使它们自动粘接成形。这样就把复杂的三维成形问题变成了一系列简单的平面成形问题

b1d2d1d

图5  快速成形的原理

特   点

它是一种新的成形方法,不同于传统的铸、锻、挤压等“受迫成形”和车、铣、钻等“去除成形”。它几乎能快速制造任意复杂的原型和零件,而零件的复杂程度对成形工艺难度、成形质量、成形时间影响不大

(1)高度柔性 它取消了专用工具,在计算机的管理和控制下可以制造任意复杂形状的零件,将信息过程和物理过程高度相关地并行发生,把可重编程、重组、连续改变的生产装备用信息方式集中到一个制造系统中,使制造成本完全与批量无关

(2)技术高度集成 是计算机技术、数控技术、激光技术、材料技术和机械技术的综合集成。计算机

b1d2d1e

图6  快速成形的过程

和数控技术为实现零件的曲面和实体造型、精确离散运算和繁杂的数据转换,为高速精确的二维扫描以及精确高效堆积材料提供了保证;激光器件和功率控制技术使采用激光能源固化、烧结、切割材料成为现实;快速扫描的高生产率喷头为材料精密堆积提供了技术条件等

(3)设计、制造一体化 由于采用了离散/堆积的加工工艺,工艺规划不再是难点,CAD和CAM能够顺利地结合在一起,实现了设计、制造一体化

(4)快速性 从CAD设计到原型加工完毕,只需几小时至几十小时,复杂、较大的零部件也可能达几百小时,从总体看,比传统加工方法快得多

几 种 典 型 工  艺

(1)液态光敏聚合物选择性固化成形

(简称SLA或SL) 这种工艺的成形机原理如图7所示,由液槽、升降工作台、激光器(为紫外激光器,如氦隔激光器、氩离子激光器和固态激光器)、扫描系统和计算机数控系统等组成。液槽中盛满液态光敏聚合物,带有许多小孔的升降工作台,在步进电动机的驱动下,沿Z轴作往复运动,激光器功率一般为10~200mW,波长为320~370nm,扫描系统为一组定位镜,它根据控制系统的指令,按照每一截面轮廓的要求作高速往复摆动,从而使激光器发出的激光束发射并聚焦于液槽中液态光敏聚合物的上表面,并沿此面作X-Y方向的扫描运动。在受到紫外激光束照射的部位,液态光敏聚合物快速固化形成相应的一层固态截面轮廓

b1d2d1f

图7  液态光敏聚合物选择性固化成形机原理

1—激光器;2—扫描系统;3—刮刀;4—可升降工作台

1;5—液槽;6—可升降工作台2

它的成形过程如图8所示,升降工作平台的上表面处于液面下一个截面层厚的高度,该层液态光敏聚合物被激光束扫描发生聚合固化,并形成所需第一层固态截面轮廓后,工作台下降一层高度,液态光敏聚合物流过已固化的截面轮廓层,刮刀按设定的层高,刮去多余的聚合物,再对新铺上的一层液态聚合物进行扫描固化,形成第二层所需固态截面轮廓,它牢固地黏结在前一层上,如此重复直到整个工件成形完成

b1d2d1g

图8  液态光敏聚合物选择性固化成形过程

1—液槽;2—刮刀;3—可升降工作台;4

—液态光敏聚合物;5—制件

(2)薄形材料选择性切割成形(简称LOM) 这种工艺的成形机原理如图9所示,它由计算机、原材料存储及送进机构、热粘压机构、激光切割系统、可升降工作台和数控系统、模型取出装置和机架等组成。其成形过程如图10所示,计算机接受和存储工件的三维模型,沿模型的高度方向提取一系列的横截面轮廓线,向数控系统发出指令,原材料存储及进给机构将存于其中的原材料逐步送至工作台上方,热粘压机构将一层层材料粘合在一起。激光切割系统按照计算机提取的横截面轮廓线,逐一在工作台上方的材料上切割出轮廓线,并将无轮廓区切割成小方网格,这是为了在成形之后能剔除废料,可升降工作台支承正在成形的工件,并在每层成形之后,降低一层材料厚度,以便送进、粘合和切割新的一层材料。数控系统执行计算机发出的指令,使一段段的材料逐步送至工作台的上方,然后粘合、切割,最终形成三维工件

b1d2d1h1

图9  薄形材料选择性切割成形机原理

1—计算机;2—激光切割系统;3—热粘压机构;

4—导向辊1;5—原材料;6—原材料存储及送进机构;

7—工作台;8—导向辊2

最适合成形中、大件以及多种模具

b1d2d1h2

图10  薄形材料选择性切割成形过程

(3)丝状材料选择性熔覆成形(简称FDM) 这种工艺的成形机的原理图如图11所示,加热喷头在计算机的控制下,根据截面轮廓的信息作X-Y平面运动和Z方向运动。丝状热塑性材料,如ABS及MABS塑料丝、蜡丝、聚烯烃树脂丝、尼龙丝、聚酰胺丝等由供丝机构送至喷头,并在喷头中加热至熔融态,然后被选择性地涂覆在工作台上,快速冷却后形成截面轮廓。完成一层成形后,喷头上升一截面层的高度,再进行下一层的涂覆,如此循环,最终形成三维产品。为提高成形效率,可采用多个热喷头进行涂覆。由于结构的限制,加热器的功率不能太大,因此,实芯柔性丝材一般为熔点不太高的热塑性塑料或蜡料

b1d2d1i

图11 丝状材料选择性熔覆成形机的原理

1—供丝机构;2—丝状材料;

3—制件;4—加热喷头

适合制造中、小塑料件和蜡件

(4)粉末材料选择性黏结成形(简称TDP) 是用多通道喷头在计算机的控制下,根据截面轮廓信息在铺好的一层粉末材料上有选择性地喷射黏结剂使部分粉末黏结,形成截面轮廓。一层成形完成后,工作台下降一截面层的高度,再进行下一层的黏结,如此循环,最终形成三维工件。一般情况下,黏结得到的工件必须放在加热炉中,进一步固化或烧结,以便提高黏结强度。其工艺原理如图12所示

b1d2d1j1

图12  粉末材料选择性黏结工艺原理

图13是按上述原理设计用于制作陶瓷模的TDP型快速成形机,它有一个陶瓷粉喷头1,在直线步进电动机的驱动下,沿Y方向作往复运动,向工作台面喷洒一层厚度为100~200μm的陶瓷粉;另一个黏结剂喷头2,也用步进电动机驱动,跟随1,有选择性地喷洒黏结剂,黏结剂液滴的直径为15~20μm

适合成形小件

几种典型工艺 该工艺成形工件表面不够光洁,必须对整个截面进行扫描黏结,成形时间较长。采用多喷头可提高成形效率

b1d2d1j2

图13  TDP型快速成形机

1—陶瓷粉喷头;2—黏结剂喷头;3—导轨1;

4—导轨2;5—驱动电动机;6—制件

三、数字化铸造——铸造过程的模拟仿真

原  理  和  特  点

应   用

计算材料科学随着计算机技术的发展,已成为一门新兴的交叉学科,是除实验和理论外解决材料科学中实际问题的第三个重要研究方法。它可以比理论和实验做得更深刻、更全面、更细致,可以进行一些理论和实验暂时还做不到的研究。因此,模拟仿真成为当前材料科学与制造科学的前沿领域及研究热点。根据美国科学研究院工程技术委员会的测算,它可以大幅度提高产品质量,增加材料出品率25%,降低工程技术成本13%~30%,降低人工成本5%~20%,增加投入设备利用率30%~60%,缩短产品设计和试制周期30%~60%等

多学科、多尺度、高性能、高保真及高效率是模拟仿真技术的努力目标,而微观组织模拟(从毫米、微米到纳米尺度)则是近年来研究的热点课题(图14)。通过计算机模拟,可深入研究材料的结构、组成及其各物理化学过程中宏观、微观变化机制,并由材料化学成分、结构及制备参数的最佳组合进行材料设计

b1d2d1k

图14  未来的多尺度模拟仿真

在国外,多尺寸模拟已在汽车及航天工业中得到应用。福特汽车公司提出了虚拟铝合金发动机缸体研究,其目标是能预测缸体的疲劳寿命。国内在相场法研究铝合金枝晶生长、无脆自动机法研究铝合金组织演变及汽车球墨铸铁件微观组织与性能预测等方面均已取得重要进展。最近,成功地采用CA方法研究单晶体叶片的结晶过程及组织演变

铸造过程的宏观模拟在工程应用中已是一项十分成熟的技术,已有很多商品化软件如MAGMA、PROCAST、DEFORM及中国的铸造之星(FT-STAR)等,并在生产中取得显著的经济及社会效益

①长江三峡水轮机重62t的不锈钢叶片已由中国二重集团铸造厂,采用模拟仿真技术,经反复模拟得到最优化铸造工艺方案

,一次试制成功(2000年)

②一片重218t的热轧薄板用轧机机架铸件到全部18片冷热轧机机架铸件由马鞍山钢铁公司制造厂与清华大学合作,采用先进铸造技术和凝固过程计算机模拟技术,优质完成,仅用10个月,且节约了上千万元生产费用

 

(1)

产品及铸造工艺设计集成系统

现代的产品设计及制造开发系统是在网络化环境下以设计与制造过程的建模与仿真为核心内容,进行的全生命周期设计。美国汽车工业希望汽车的研发周期缩短为15~25个月,而20世纪90年代汽车的研发周期为5年。美国先进金属材料加工工程研究中心提出了产品设计/制造(铸造)集成系统在网络化环境下,产品零部件的设计过程中同时要进行影响产品及零部件性能的铸造等成形制造过程的建模与仿真,它不仅可以提供产品零部件的可制造性评估,而且可以提供产品零部件的性能预测。因此,在网络化环境下,铸造过程的模拟仿真将在新产品的研究与开发中发挥重要作用。图15为产品虚拟开发与传统方法比较

b1d2d1l1

图15  产品虚拟开发与传统方法比较

(2)

虚拟制造

虚拟制造是CAD、CAM和CAPP等软件的集成技术。其关键是建立制造过程的计算模型、模拟仿真制造过程。虚拟制造的基础是虚拟现实技术。所谓“虚拟现实”技术是利用计算机和外围设备,生成与真实环境一致的三维虚拟环境,使用户通过辅助设备从不同的“角度”和“视点”与环境中的“现实”交互

(3)

集成的设计、制造与管理信息系统是未来铸造企业取得成功的必要条件(见图16)。所有工程、铸造与管理系统无缝连接,确保在正确的时间与地点能实时作出正确的决定。可在异地进行实时、协同的分布式生产,建成“虚拟企业”

b1d2d1l2

图16  集成的设计、制造与管理信息系统

五、洁净化铸造——绿色铸造

美国在展望2010年的制造业前景时,进一步把“精确成形工艺”发展为“无废弃物成形加工技术(waste-freeprocess)”。所谓“无废弃物加工”的新一代制造技术是指加工过程中不产生废弃物;或产生的废弃物能在整个制造过程中作为原料而利用,并在下一个流程中不再产生废弃物。由于无废物加工减少了废料、污染和能量消耗,并对环境有利,从而成为今后推广的重要绿色制造技术。绿色铸造是长期的努力方向及目标,最近日本铸造工厂提出了3R的环境保护新概念(见图17),即:减少废弃物(reduce)、再利用(reuse)及再循环(recvcle)。德国制定了《产品回收法规》

b1d2d1m

图17  与环境友好的3R日本铸造厂

铸铁和铸钢的特性与结构特点

材  料  特  性

结  构  特  点

综合力

学性能

壁厚变

化对力

学性能

的影响

冷却速

度的敏

感性

流动性

线收缩率

与体积收

缩率

缺口敏

感性

热稳

定性

综合力学性能低,抗压强度大,为本身抗拉强度的3~4倍,消震能力比钢大10倍,弹性模量较低

很大

很好

(1)可获得比铸钢更薄而复杂的铸件,铸件中残余内应力及翘曲变形较铸钢小

(2)对冷却速度敏感性大,因此薄截面容易形成白口和裂纹,而厚截面又易形成疏松,故灰铸铁件当壁厚超过其临界值时,随着壁厚的增加其力学性能反而显著降低

(3)表面光洁,因而加工余量比铸钢小,表面加工质量不高对疲劳极限不利影响小

(4)消震性高,常用来做承受振动的机座

(5)不允许用于长时间在250℃温度下工作的零件

(6)不同截面上性能较均匀,适于做要求高,而截面不一的较厚(大型)铸件

蠕墨铸铁

介于灰铸铁与球墨铸铁之间,冲击韧性及伸长率均比球墨铸铁低,而高于灰铸铁

比灰铸

铁小

 

加蠕化剂去硫去氧后,流动性良好

蠕化率越高,体积收缩率越小,接近灰铸铁。蠕化率越低,体积收缩率越大,接近球墨铸铁

 

热导率在球墨铸铁与灰铸铁之间

具有介于灰铸铁和球墨铸铁之间的良好性能, 如抗拉强度及屈服强度高于高强度灰铸铁而低于球墨铸铁,热传导性、耐热疲劳性、切削加工性、减振性近似一般灰铸铁,疲劳极限和冲击韧度不如球墨铸铁,但明 显地优于灰铸铁。铸造性能接近灰铸铁,因而铸造工艺简单,成品率高。由于蠕墨铸铁所具有的这些优异的综合性能,使其具有广泛应用的条件

(1)由于强度高,对断面的敏感性小,铸造性能好,因而可用来制造复杂的大型零件

(2)由于蠕墨铸铁具有较高的力学性能,同时还具有较好的导热性,因而常用来制造在热交换以及有较大温度梯度下工作的零件,如汽车制动盘、钢锭模、金属型等

(3)由于蠕墨铸铁的强度较高:致密性好,可用来代替孕育铸铁件,不仅节约了废钢,减轻了铸件重量(碳当量较高,强度却比灰铸铁高),铸件的成品率也大幅度提高,而且使铸件的气密性增加,这一点特别适用于液压件的生产

(4)加工蠕墨铸铁时的刀具寿命介于灰铸铁和球墨铸铁之间

(5)加工表面的表面粗糙度值通常比灰铸铁大

强度、塑性和弹性模量均比灰铸铁高,抗磨性好,比灰铸铁约大一倍,消震能力比灰铸铁低

与灰铸铁相近

比灰铸铁体积收缩率大而线收缩率小,易形成缩孔、缩松

与铸钢相近

(1)铸件多设计成均匀厚度,尽量避免厚大断面

(2)相连壁的圆角,不同壁厚的过渡段与铸钢相似

(3)球墨铸铁体积收缩率与铸钢相近,因此,其结构设计与铸钢相近;由于其流动性好,在某些情况下可代替铸钢作薄壁零件

(4)可制造在300~400℃温度下使用的零件

(5)可锻铸铁往往因化学成分控制不当引起铸件不合格而报废,但球墨铸铁的化学成分可在较宽范围内变动而不致引起极大的力学性能变化

退火前很脆,综合力学性能稍逊于球墨铸铁,冲击韧性比灰铸铁高3~4倍,是韧性与冲击值最好的一种铸铁

比灰铸铁差,比铸钢好

体积收缩率比铸钢还大,退火后最终线收缩率比灰铸铁小得多

较高

(1)体积收缩率大,目前只宜做厚度不大的零件,最合适厚度为5~16mm范围,避免十字形截面

(2)可锻铸铁是由白口铸铁热处理(退火或韧化)而得,故其不同厚度截面中的力学性能有很大变化,因此加工余量很小(尺寸<500mm的铸件为2~3mm)。同一铸件的厚度一定要均匀,厚度之比为1:1.6~1:2较合适

(3)一些薄截面、形状复杂、工作中又受震动的零件,如用铸钢,因其铸造性能差,不易得到合格品,且价格贵,用灰铸铁又嫌其塑性、韧性不足,可用可锻铸铁,如汽车后桥

(4)可以在300~350℃温度下使用

(5)铸件表面比一般灰铸铁光洁,表面韧性较好,适用于力学性能要求较高的表面不加工的毛坯件

(6)突出部分都要用筋加固

综合力学性能高,抗压强度与本身抗拉强度相等,消震性能低

不大

不好,其中低碳钢比高碳钢差,低合金钢又比碳钢差,但高锰钢较好

大,线收缩率约为2%,而灰铸铁只有0.5%~1%

(1)铸件壁厚比铸铁大,内应力翘曲较大,不易铸出复杂零件

(2)可做出大厚度铸件,其力学性能大厚度增加时没有显著降低,但必须使铸件保持顺序凝固的条件(即使铸件壁保持有一定的斜度和节点位于铸件上部等),以防止疏松与缩孔,但对一些壁较薄而且均匀的铸件,则应创造同时凝固的条件

(3)相连壁的圆角,不同壁厚的过渡段均比灰铸铁大

(4)减少节点及金属积聚比灰铸铁要求严格

(5)气体饱和倾向大,流动性差,表面杂质及气泡多,故加工余量比灰铸铁大

(6)含碳量增高,收缩率增加,导热性能降低,故高碳钢件容易发生冷裂,低合金钢比碳钢易裂,高锰钢导热性很差,收缩率大,很容易开裂,设计时更应强调,壁厚要均匀,转角要圆滑

用灰铸铁、蠕墨铸铁、球墨铸铁制造汽车零件和钢锭模的技术经济比较

名称

6110柴油机(104kW)缸盖

集 成 块

EQ140汽车发动机排气管

毛坯质量

80kg,897mm×249mm×110mm,主要壁厚5.5mm,最大壁厚40mm

最小12kg(壁厚92mm)

最大136kg(壁厚280mm)

14.2kg,总长676.5mm,主要管壁5mm局部最大壁厚22mm

技术要求

该铸件结构复杂,系六缸一盖连体铸件,工作时受较高机械热应力,要求材质具有良好力学性能、抗热疲劳性能、铸造性能和气密性

要求铸件致密、耐高压(7~32MPa)、耐磨,表面粗糙度小、加工性能好

该零件服役温度差别大(室温~1000℃),承受较大的热循环载荷,要求材质有良好的抗热疲劳性能

原设计材质为灰铸铁

(1)缸盖上喷油嘴座旁的气道壁因热疲劳最易开裂,该部位加工后壁厚仅3~4mm,工作温度250~370℃

(2)缸盖渗漏严重,在导杆孔、螺栓孔等热节处(均为非铸出孔)易产生缩松(孔)缺陷,经加工钻孔后铸壁有微孔穿透造成渗漏

(3)因铸件热节多达50处,尺寸精度高,内腔结构复杂,难以采用冒口补缩和内外冷铁工艺

(4)HT250(CuMo合金铸铁)

(1)由于HT300高牌号灰铸铁碳硅质量分数低,所以铸造性能差,铸件易产生缩裂或晶间缩松而报废,废品率高达60%

(2)工艺出品率低,只有55%左右,压边浇冒口的质量是铸件质量的80%以上

(3)HT300

(1)寿命短,汽车行驶不到10000km,管壁开裂严重;若改用球墨铸铁排气管,虽不发生开裂,但变形严重,通道口错开漏气

(2)HT150

蠕墨铸铁

(1)由于蠕墨铸铁的抗拉强度、抗蠕变能力和塑性均明显优于原材质,故采用蠕墨铸铁缸盖,开裂倾向大为降低,使用寿命显著提高

(2)缸盖渗漏率下降15%,当蠕化率大于50%时,其体收缩率小于HT250低合金铸铁,其气密性又与球墨铸铁相近

(3)低合金灰铸铁的抗热疲劳性能、气密性和铸造性能、加工性等对碳当量和合金元素的敏感性大,尤其对薄壁复杂件更为突出,而蠕墨铸铁的上述性能对碳当量敏感性小,加之采用稀土蠕化剂又有较宽的蠕化范围,冲天炉生产条件下缸盖质量也易于控制

(4)节省贵重合金元素,成本下降21%

(1)废品率大幅度下降,总废品率约16.9%(其中夹砂、夹杂物气孔占9%)

(2)工艺出品率提高到75%,压边浇冒口质量比原来的减少2/5

(3)经济效益明显,扣除蠕墨铸铁生产成本比HT300灰铸件增加约8%外,仅废品率下降、工艺出品率提高两项,使蠕墨铸铁件成本降低1/3以上

(1)提高寿命3~5倍以上,根本上解决了排气管开裂问题

(2)取消了加强肋,铸件自重减轻了10%

技术要求

钢锭模制作目前一般采用普通灰铸铁和球墨铸铁

钢锭模在反复受热、冷却的恶劣条件下工作,所以其材质的特性直接影响使用寿命。在热应力的作用下,脆性材质可能发生断裂,塑性材料则会发生永久变形。热应力的大小与温度梯度、热膨胀系数和弹性模量有关。材质的导热性好(可降低温度梯度)、弹性模量低、强度高(特别是高温强度)、韧性好都有利于承受热循环载荷。在非常快的热循环条件下,导热性是主要影响因素,在缓慢热循环的条件下,高强度则更为重要。对于不同结构和冷却方式的钢锭模,对其材质的要求也不尽相同。它要求材质具有良好力学性能、抗热疲劳性能

蠕墨铸铁的力学性能比灰铸铁高,导热性能比球墨铸铁好,所以它也是一种生产钢锭模的良好材质

灰铸铁、球墨铸铁、蠕墨铸铁

(1)某钢铁厂采用蠕虫状石墨10%~55%的蠕墨铸铁制作中小型钢锭模(用冲天炉熔炼),在雨淋及空冷的冷却条件下,得到最佳的使用效果,使炼钢车间的钢锭模消耗量明显下降

(2)图为各种材质钢锭模的对比试验结果,可见在空冷条件下球墨铸铁寿命最长,消耗最少,次之是体积分数为10%~50%的蠕虫状石墨铸铁;在喷水雨淋冷却条件下体积分数为10%~50%蠕虫状石墨铸铁最佳;浸水冷却条件下灰铸铁最好

(3)生产中发现,空冷的断面厚50.8cm的钢锭模因断面厚,石墨难以全部球化。即使石墨全部球化时,锭模底部圆角处出现缩孔,其上部石墨漂浮也严重;而体积分数为10%~50%蠕虫状石墨,可以避免这些缺陷,给铸造工艺带来方便,其使用寿命与球墨铸铁相差不大

(4)该厂采用体积分数为10%~50%蠕虫状石墨的蠕墨铸铁生产空冷断面厚50.8cm和雨淋冷却断面厚28cm钢锭模,经过一年左右的实际使用,其模耗与原使用的灰铸铁锭模相比明显降低(见右表),每年节约钢锭模数千吨,价值百万元以上

b1d2d1n

蠕虫—蠕虫石墨;球—球状石墨;团—团球状石墨;百分数为体积分数

车间

锭模类型

吨钢消耗量

/kg

每吨钢消

耗降低/kg

备  注

平炉

厚50.8cm

空冷锭模

8.06

11.9

包括体积分数为55%~80%蠕虫状石墨铸铁锭模

转炉

厚28cm

雨淋开口模

11.32

3.62

  • 相关文章
  • 热门文章
免责申明:天天CAD教程网旨在相互学习交流,是一个完全免费的网站,部分原创作品,欢迎转载,部分内容来自互联网,如果侵犯了您的权利请尽快通知我们!邮箱:qm198794@gmail.com天天CAD教程网湘ICP备17006802号
【回到顶部】