在减速链中,最后一级(或最后几级)齿轮的空回误差对整个传动链的空回误差影响最大。因此,提高最后一级(或最后几级)齿轮的制造精度,对降低整个传动链的空回误差是有重要意义的。同时,各级传动比按先小后大进行排列较为合理。
2.消除或减小空回的方法
① 利用弹簧力
② 固定双片齿轮
③ 利用接触游丝
④ 调整中心距法
5 齿轮传动链的结构设计
传动链结构设计的基本问题在于正确解决齿轮的结构、齿轮与轴的联接方法等。
1.齿轮的结构设计
通过齿轮传动的强度计算,只能确定出齿轮的主要尺寸,如齿数、模数、齿宽、螺旋角、分度圆直径等,而齿圈、轮辐、轮毂等的结构形式及尺寸大小,通常都是由结构设计而定。
下图所示的为精密机械中推荐采用的直齿和斜齿圆柱齿轮的结构。
圆柱齿轮的典型结构
当齿轮的齿根圆直径与轴径接近时,可以将齿轮和轴做成整体的,称为齿轮轴(上图(a))。如果齿轮的直径比轴的直径大得多,则应把齿轮和轴分开来制造。直径较小的齿轮可做成实心的(上图(b))。顶圆直径da≤500 mm的齿轮可以是锻造的或铸造的,常采用辐板式结构。有时为了减轻齿轮的重量,可在腹板上开孔(图9-20(c))。当齿轮大而薄时,可采用组合式结构(下图(a))。这种齿轮最适于需用有色金属制造轮缘的情况,此时轮毂用钢制造而轮缘用板料制造,这样能节省贵重的有色金属。对于非金属齿轮,也考虑做成组合式的,否则齿轮与轴的联接常会产生困难(下图(b))。
组合齿轮结构
圆锥齿轮的典型结构如下图所示。当直径较小时,可采用齿轮轴形式;当直径较大时,也可在腹板上开孔以减轻重量。
圆锥齿轮的典型结构
常见的蜗轮蜗杆典型结构如下面两个图所示。一般将蜗杆和轴作成一体,称为蜗杆轴。
蜗杆轴
蜗轮的结构
蜗轮的结构一般为组合式结构,齿圈用青铜制造,轮芯用铸铁或钢制造。上图(a)为组合式过盈联接,这种结构常由青铜齿圈与铸铁轮芯组成,多用于尺寸不大或工作温度变化较小的蜗轮。上图(b)为组合式螺栓联接,这种结构装拆方便,多用于尺寸较大或易磨损的蜗轮。上图(c)为整体式,主要用于铸铁蜗轮或尺寸很小的青铜蜗轮。上图(d)为拼铸式,将青铜齿圈浇铸在铸铁轮芯上,常用于成批生产的蜗轮。[yao_page]
2.齿轮与轴的联接
齿轮与轴的联接方法是传动链结构设计中重要内容之一,因为联接方法的好坏,将直接影响传动精度和工作可靠性。
由于齿轮传动链的工作条件(传递转矩、拆卸的频繁程度等)、结构的空间位置,以及装配的可能性等情况的不同,因此齿轮与轴的联接方式也是多种多样的。总的来说,在齿轮和轴的联接中,要求联接牢固,能够传递的转矩大,能保证轴与齿轮的同轴度和垂直度。
不同的联接方法,对于保证以上要求的完备程度各不相同,因此应根据传动链的特点合理选择。
常用的联接方法有以下几种:
① 销联接
如右图(a)所示,此种方法在小型精密机械中用得较多。它的优点是结构简单,工作可靠,能传递中等大小的转矩,不易产生空回。缺点是,装配时齿轮不能自由绕轴转动到适合的位置,以减小偏心的有害影响;同时,不宜用在齿轮直径太大之处,因为轮缘会挡住钻卡,以致不能顺利钻出销钉孔。
若齿轮需经常拆换,可用圆锥销联接(右图(b))。圆柱销和圆锥销的直径一般取轴径的1/4,最大不超过1/3,以免过多地削弱轴的强度和刚度。
② 螺钉联接
下图(a)所示的为用紧定螺钉沿齿轮轮毂径向固定齿轮,该方法装卸方便,但传递转矩小,螺钉容易松动,且拧紧螺钉时会引起齿轮的偏心。下图(b)为在齿轮和轴的分界面上钻孔攻螺纹,并拧入紧定螺钉的固定结构。传动时,紧定螺钉受剪切和挤压作用。优点是结构简单,便于装卸,轴向尺寸小,宜用于轮毂很短(或无轮毂)而外径小的齿轮。缺点是传递转矩小,且易在使用中产生空回,故也不宜用于精密齿轮传动链中。下图(c)为用螺钉直接将齿轮固定在轴套凸缘上的结构。齿轮的定心靠其内孔与轴套外圆的配合保证,垂直度则靠轴肩的端面与齿轮端面的贴紧来保证。这种结构主要用于非金属齿轮的联接。此法在保证同轴度和垂直度方面较好。