箱体零件是机器或部件的基础零件,轴、轴承、齿轮等有关零件按规定的技术要求装配到箱体上,连接成部件或机器,使其按规定的要求工作,因此箱体零件的加工质量不仅影响机器的装配精度和运动精度,而且影响机器的工作精度、使用性能和寿命。下面以图4-3所示齿轮减速箱体零件的加工为例讨论箱体类零件的工艺过程。
1 ` 箱体类零件的结构特点和技术要求分析
图4-3所示零件为某车床主轴箱体类零件,属于中批生产,零件的材料为HT200铸铁。一般来说,箱体零件的结构较复杂,内部呈腔形,其加工表面主要是平面和孔。对箱体类零件的技术要求分析,应针对平面和孔的技术要求进行分析。
1.平面的精度要求 箱体零件的设计基准一般为平面,本箱体各孔系和平面的设计基准为G面、H面和P面,其中G面和H面还是箱体的装配基准,因此它有较高的平面度和较小表面粗糙度要求。
2.孔系的技术要求 箱体上有孔间距和同轴度要求的一系列孔,称为孔系。为保证箱体孔与轴承外圈配合及轴的回转精度,孔的尺寸精度为IT7,孔的几何形状误差控制在尺寸公差范围之内。为保证齿轮啮合精度,孔轴线间的尺寸精度、孔轴线间的平行度、同一轴线上各孔的同轴度误差和孔端面对轴线的垂直度误差,均应有较高的要求。
3.孔与平面间的位置精度 箱体上主要孔与箱体安装基面之间应规定平行度要求。本箱体零件主轴孔中心线对装配基面(G、H面)的平行度误差为0.04mm。
4.表面粗糙度 重要孔和主要表面的粗糙度会影响连接面的配合性质或接触刚度,本箱体零件主要孔表面粗糙度为0.8μm,装配基面表面粗糙度为1.6μm。
2 箱体类零件的材料及毛坯
箱体零件的材料常用铸铁,这是因为铸铁容易成形,切削性能好,价格低,且吸振性和耐磨性较好。根据需要可选用HT150~350,常用HT200。在单件小批量生产情况下,为缩短生产周期,可采用钢板焊接结构。某些大负荷的箱体有时采用铸钢件。在特定条件下,可采用铝镁合金或其它铝合金材料。
铸铁毛坯在单件小批生产时,一般采用木模手工造型,毛坯精度较低,余量大;在大批量生产时,通常采用金属模机器造型,毛坯精度较高,加工余量可适当减小。单件小批生产直径大于50mm的孔,成批生产大于30mm的孔,一般都铸出预孔,以减少加工余量。铝合金箱体常用压铸制造,毛坯精度很高,余量很小,一些表面不必经切削加即可使用。
3 箱体类零件的加工工艺过程
箱体零件的主要加工表面是孔系和装配基准面。如何保证这些表面的加工精度和表面粗糙度,孔系之间及孔与装配基准面之间的距离尺寸精度和相互位置精度,是箱体零件加工的主要工艺问题。
箱体零件的典型加工路线为:平面加工-孔系加工-次要面(紧固孔等)加工。
图4-3某车床主轴箱体零件,其生产类型为中小批生产;材料为HT200;毛坯为铸件。该箱体的加工工艺路线如表4-2。
表4-2 车床主轴箱体零件的加工工艺过程
4 箱体类零件的加工工艺过程分析
一、主要表面的加工方法选择
箱体的主要加工表面有平面和轴承支承孔。
箱体平面的粗加工和半精加工主要采用刨削和铣削,也可采用车削。当生产批量较大时,可采用各种组合铣床对箱体各平面进行多刀、多面同时铣削;尺寸较大的箱体,也可在多轴龙门铣床上进行组合铣削,可有效提高箱体平面加工的生产率。箱体平面的
精加工,单件小批量生产时,除一些高精度的箱体仍需手工刮研外,一般多用精刨代替传统的手工刮研;当生产批量大而精度又较高时,多采用磨削。为提高生产效率和平面间的位置精度,可采用专用磨床进行组合磨削等。
箱体上公差等级为IT 7级精度的轴承支承孔,一般需要经过3~4次加工。可采用扩一粗铰一精铰,或采用粗镗-半精镗一精镗的工艺方案进行加工(若未铸出预孔应先钻孔)。以上两种工艺方案,表面粗糙度值可达Ra0. 8~1. 6μm。铰的方案用于加工直径较小的孔,镗的方案用于加工直径较大的孔。当孔的加工精度超过IT 6级,表面粗糙度值Ra小于0. 4μm时,还应增加一道精密加工工序,常用的方法有精细镗、滚压、珩磨、浮动镗等。
二、箱体加工定位基准的选择
1.粗基准的选择 粗基准的选择对零件主要有两个方面影响,即影响零件上加工表面与不加工表面的位置和加工表面的余量分配。为了满足上述要求,一般宜选箱体的重要孔的毛坯孔作粗基准。本箱体零件就是宜主轴孔Ⅲ和距主轴孔较远的Ⅱ轴孔作为粗基准。本箱体不加工面中,内壁面与加工面(轴孔)间位置关系重要,因为箱体中的大齿轮与不加工内壁间隙很小,若是加工出的轴承孔与内壁有较大的位置误差,会使大齿轮与内壁相碰。从这一点出发,应选择内壁为粗基准,但是夹具的定位结构不易实现以内壁定位。由于铸造时内壁和轴孔是同一个型心浇铸的,以轴孔为粗基准可同时满足上述两方的要求,因此实际生产中,一般以轴孔为粗基准。
2.精基准的选择 选择精基准主要是应能保证加工精度,所以一般优先考虑基准重合原则和基准同一原则,本零件的各孔系和平面的设计基准和装配基准为为G、H面和P盖,因此可采用G、H面和P三面作精基准定位。
三、箱体加工顺序的安排
箱体机械加工顺序的安排一般应遵循以下原则:
1.先面后孔的原则 箱体加工顺序的一般规律是先加工平面,后加工孔。先加工平面,可以为孔加工提供可靠的定位基准,再以平面为精基准定位加工孔。平面的面积大,以平面定位加工孔的夹具结构简单、可靠,反之则夹具结构复杂、定位也不可靠。由于箱体上的孔分布在平面上,先加工平面可以去除铸件毛坯表面的凹凸不平、夹砂等缺陷,对孔加工有利,如可减小钻头的歪斜、防止刀具崩刃,同时对刀调整也方便。
2.先主后次的原则 箱体上用于紧固的螺孔、小孔等可视为次要表面,因为这些次要孔往往需要依据主要表面(轴孔)定位,所以这些螺孔的加工应在轴孔加工后进行。对于次要孔与主要孔相交的孔系,必须先完成主要孔的精加工,再加工次要孔,否则会使主要孔的精加工产生断续切削、振动,影响主要孔的加工质量。
3.孔系的数控加工
由于箱体零件具有加工表面多,加工的孔系的精度高,加工量大的特点,生产中常使用高效自动化的加工方法。过去在大批、大量生产中,主要采用组合机床和加工自动线,现在数控加工技术,如加工中心、柔性制造系统等已逐步应用于各种不同的批量的生产中。车床主轴箱体的孔系也可选择在卧式加工中心上加工,加工中心的自动换刀系统,使得一次装夹可完成钻、扩、铰、镗、铣、攻螺纹等加工,减少了装夹次数,实行工序集中的原则,提高了生产率。
图4-3 某车床主轴箱体简图
拨动杆零件机械加工工艺规程
四. 零件的工艺分析
图4-4所示零件是某机床变速箱体中操纵机构上的拨动杆,用作把转动变为拨动,实现操纵机构的变速功能。本零件生产类型为中批生产。下面对该零件进行精度分析。对于形状和尺寸(包括形状公差、位置公差)较复杂的零件,一般采取化整体为部分的分析方法,即把一个零件看作由若干组表面及相应的若干组尺寸组成的,然后分别分析每组表面的结构及其尺寸、精度要求,最后再分析这几组表面之间的位置关系。由图4-4零件图样中可以看出,该零件上有三组加工表面,这三组加工表面之间有相互位置要求,具体分析如下:
三组加工表面中每组的技术要求是:
1.以尺寸φ16H7mm为主的加工表面,包括φ25h8mm外圆、端面,及与之相距74±0.3mm的孔φ10H7mm。其中φ16H7mm孔中心与φ10H7mm孔中心的连线,是确定其它各表面方位的设计基准,以下简称为两孔中心连线。
2.粗糙度Ra6.3μm平面M,以及平面M上的角度为130°的槽。
3.P、Q两平面,及相应的2-M8mm螺纹孔。
对这三组加工表面之间主要的相互位置要求是:
第⑴组和第⑵组为零件上的主要表面。第⑴组加工表面垂直于第⑵组加工表面,平面M是设计基准。第⑵组面上的槽的位置度公差φ0.5mm,即槽的位置(槽的中心线)与B面轴线垂直且相交,偏离误差不大于φ0.5mm。槽的方向与两孔中心连线的夹角为22°47’±15’。第⑶组及其它螺孔为次要表面。第⑶组上的P、Q两平面与第⑴组的M面垂直,P面上螺孔M8mm的轴线与两孔中心连线的夹角45°。Q面上的螺孔M8mm的轴线与两孔中心连线平行。而平面P、Q位置分别与M8的轴线垂直,P、Q位置也就确定了。
2毛坯的选择
此拨动杆形状复杂,其材料为铸铁,因此选用铸件毛坯。
3定位基准的选择
1.精基准的选择 选择基准思路的顺序是,首先考虑以什么表面为精基准定位加工工件的主要表面,然后考虑以什么面为粗基准定位加工出精基准表面,即先确定精基准,然后选出粗基准。由零件的工艺分析可以知道,此零件的设计基准是M平面和φ16mm和φ10mm两孔中心的连线,根据基准重合原则,应选设计基准为精基准,即以M平面和两孔为精基准。由于多数工序的定位基准都是一面两孔,也符合基准同一原则。
2.粗基准的选择 根据粗基准选择应合理分配加工余量的原则,应选φ25mm外圆的毛坯面为粗基准(限制四个自由度),以保证其加工余量均匀;选平面N为粗基准(限制一个自由度),以保证其有足够的余量;根据要保证零件上加工表面与不加工表面相互位置的原则,应选R14mm圆弧面为粗基准(限制一个自由度),以保证φ10mm孔轴线在R14mm圆心上,使R14mm处壁厚均匀。
4工艺路线的拟定
1.各表面加工方法的选择 根据典型表面加工路线,M平面的粗糙度Ra6.3μm,采用面铣刀铣削;130°槽采用“粗刨-精刨”加工;平面P、Q用三面刃铣刀铣削;孔φ16H7mm、φ10H7mm可采用“钻-扩-铰”加工;φ25mm外圆采用“粗车-半精车-精车”,N面也采用车端面的方法加工;螺孔采用“钻底孔-攻丝加工”。
2.加工顺序的确定 虽然零件某些表面需要粗加工、半精加工、精加工,由于零件的刚度较好,不必划分加工阶段。根据基准先行、先面后孔的原则,以及先加工主要表面(M平面与φ25mm外圆和φ16mm孔 ),后加工次要表面(P、Q平面和各螺孔)的原则,安排机械加工路线如下所示:
①以N面和φ25mm毛坯面为粗基准,铣M平面。
②以M平面定位,同时按φ25mm毛坯外圆面找正,“粗车-半精车-精车”φ25mm外圆到设计尺寸,“钻-扩-铰”φ16mm孔到设计尺寸,车端平面N到设计尺寸。
③以M面(三个自由度)、φ16mm(两个自由度)和R14mm(一个自由度)为定位基准,“钻-扩-铰”φ10mm孔到设计尺寸。
④以N平面和φ16mm、φ10mm两孔为基准,“粗刨-精刨”130°槽。
⑤铣P、Q平面。(一面两孔定位)。
⑥“钻-攻丝”加工螺孔。(一面两孔定位)。
5确定加工余量及工序尺寸(略)
6 填写工艺文件
该零件的“机械加工工艺过程卡片”见表4-3所示。其中第30工序的“机械加工工序片”见表4-4 所示。其余略。
图4-4拨动杆零件简图
表4-3 机械加工工艺过程卡片
|
机械加工工艺过程卡片
|
产品型号
|
|
零件
图号
|
|
共1页
|
|
产品名称
|
|
零件
名称
|
拨动杆
|
第1页
|
|
材料
牌号
|
HT200
|
毛坯
种类
|
铸件
|
毛坯外
形尺寸
|
|
每毛坯可制件数
|
|
每件
台数
|
|
备注
|
|
|
序号
|
工序
名称
|
工序内容
|
车间
|
工段
|
设备
|
工艺装备
|
工时
|
|
准终
|
单件
|
|
10
|
铣
|
铣M平面
|
机加
|
|
X62
|
V口虎钳、面铣刀
|
|
|
|
20
|
车
|
车φ25mm外圆成,钻-扩-铰φ16H7mm孔成,车N面,倒角
|
机加
|
|
C6140
|
车夹具、锥柄钻头等
|
|
|
|
30
|
钻
|
钻-扩-铰φ10H7mm孔成
|
机加
|
|
Z35
|
钻夹具,钻头等
|
|
|
|
40
|
刨
|
粗刨-精刨130°槽
|
机加
|
|
B665
|
刨夹具、成型刨刀
|
|
|
|
50
|
铣
|
铣P、Q面
|
机加
|
|
X62
|
铣夹具,三面刃铣刀
|
|
|
|
60
|
钻
|
钻2-M8mm底孔2-φ6.5mm
|
机加
|
|
Z35
|
回转钻模,钻头
|
|
|
|
70
|
钻
|
攻丝2-M8mm
|
机加
|
|
Z35
|
回转钻模、M8丝锥
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
设计(日期)
|
审核(日期)
|
会签
(日期)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
标记
|
处数
|
更改
文件号
|
签字
|
日期
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表4-4 机械加工工序卡片
|
机械加工工序卡片
|
产品型号
|
|
零件图号
|
|
共1页
|
产品名称
|
|
零件名称
|
拨动杆
|
第1页
|
(表3-11图)
|
车间
|
工序号
|
工序名称
|
材料牌号
|
|
30
|
钻-扩-铰孔
φ10H7mm
|
HT200
|
毛坯种类
|
毛坯外形尺寸
|
每毛坯可制件数
|
每台件数
|
铸件
|
|
1
|
1
|
设备名称
|
设备型号
|
设备编号
|
同时加工件数
|
摇臂钻床
|
Z35
|
|
1
|
工步号
|
工步内容
|
工艺装备
|
主轴转速/(r/min)
|
切削速度/(m/min)
|
进给量/(mm/r)
|
切削深度/mm
|
进给次数
|
工步工时
|
机动
|
辅助
|
1
|
钻孔φ10H7mm至尺寸φ9mm
|
钻夹具、φ9mm钻头
|
195
|
13.5
|
0.3
|
|
1
|
|
|
2
|
扩孔φ10H7mm至尺寸φ9.8mm
|
扩孔刀φ9.8mm
|
68
|
6.2
|
|
|
1
|
|
|
3
|
铰孔φ10H7mm成
|
铰刀φ10H7mm
|
68
|
7.5
|
0.18
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
设计(日期)
|
审核(日期)
|
会签(日期)
|
|
|
|
|
|
|
|
标记
|
处数
|
更改文件号
|
签字
|
日期
|
|
|
|
|