1.棱柱
以正六棱柱为例,讨论其视图特点。
如图
1-14所示位置放置六棱柱时,其两底面为水平面,H面投影具有全等性;前后两侧面为正平面,其余四个侧面是铅垂面,它们的水平投影都积聚成直线,与六边形的边重合。
图1-14 正六棱柱的三视图
从图1-14所示,可知直棱柱三面投影特征:一个视图有积聚性,反映棱柱形状特征;另两个视图都是由实线或虚线组成的矩形线框。
2.棱锥
以正三棱锥为例,讨论其视图特点。
如图1—15所示,正三棱锥底面平行于水平面而垂直于其它两个投影面,所以俯视图为一正三角形,主、左视图均积聚为一直线段,棱面SAC垂直于侧面,倾斜于其它投影面,所以左视图积聚为一直线段,而主、俯视图均为类似形;棱面SAB和SBC均与三个投影面倾斜,它们的三个视图均为比原棱面小的三角形(类似形)。
图1-15正三棱锥的三视图
棱锥的视图特点:一个视图为多边形,另二个视图为三角形线框
3.圆柱
圆柱体的三视图如图1—16所示。圆柱轴线垂直于水平面,则上下两圆平面平行于水平面,俯视图反映实形,主、左视图各积聚为一直线段,其长度等于圆的直径。圆柱面垂直于水平面,俯视图积聚为一个圆,与上、下圆平面的投影重合。圆柱面的另外两个视图,要画出决定投影范围的转向轮廓线(即圆柱面对该投影面可见与不可见的分界线)。
图1-16 圆柱体的三视图
圆柱的视图特点:一个视图为圆,另二个视图为方形线框。
4.圆锥
圆锥体的三视图如图1—17所示。直立圆锥的轴线为铅垂线,底平面平行于水平面,所以底面的俯视图反映实形(圆),其余两个视图均为直线段,长度等于圆的直径。圆锥面在俯视图上的投影重合在底面投影的圆形内,其它两个视图均为等腰三角形。
图1-17圆锥的三视图
圆锥的视图特点:一个视图为圆,另二个视图为三角形线框。
5.球
如图1—18所示,圆球的三个视图均为圆,圆的直径等于球的直径。球的主视图表示了前、后半球的转向轮廓线(即A圆的投影),俯视图表示了上、下半球的转向轮廓线(即B圆的投影)。左视图即为左、右半球的转向轮廓线(即C圆的投影)。
图1-18 球的三视图